
Binary Obfuscation Using Signals∗

Igor V. Popov, Saumya K. Debray, Gregory R. Andrews
Department of Computer Science

University of Arizona
Tucson, AZ 85721, USA

{ipopov, debray, greg}@cs.arizona.edu

ABSTRACT
Reverse engineering of software is the process of recovering higher-
level structure and meaning from a lower-level program represen-
tation. It can be used for legitimate purposes—e.g., to recover
source code that has been lost—but it is often used for nefarious
purposes—such as to search for security vulnerabilities in binaries
or to steal intellectual property. The first step in reverse engineering
a binary program is to disassemble the machine code into assembly
code. This paper addresses the topic of making reverse engineer-
ing of binaries hard by making it difficult to statically disassemble
machine code. The starting point is an executable binary program.
The executable is then obfuscated by changing many control trans-
fers into signals (traps) and inserting dummy control transfers and
“junk” instructions after the signals. The resulting code is still a
correct program, but current disassemblers are unable to disassem-
ble from 30 to 80 percent of the instructions in the program. Fur-
thermore, the disassemblers have a mistaken understanding of over
half of the control flow edges. However, the obfuscated program
necessarily executes more slowly than the original. Experimental
results quantify the tradeoff between the degree of obfuscation and
the increase in execution time.

1. INTRODUCTION
Software is often distributed in binary form, without source code.

Many groups have developed technology that enables one to re-
verse engineer binary programs and thereby reconstruct the actions
and structure of the program. This is accomplished by disassem-
bling machine code into assembly code and then possibly decom-
piling the assembly code into higher level representations [2, 4, 5,
15, 16, 23]. While reverse-engineering technology has many le-
gitimate uses, it can also be used to discover vulnerabilities, make
unauthorized modifications, or steal intellectual property. For ex-
ample, a hacker might probe for security vulnerabilities by figuring
out how a software system works and where it might be attacked.
Similarly, a software pirate might steal a piece of software with an
embedded copyright notice or software watermark by reconstruct-
ing enough of its internal structure to identify and delete the copy-
right notice or watermark without affecting the functionality of the
program.

One way to prevent reverse engineering is to ship and store bi-
naries in encrypted form. This can provide theoretically perfect
protection, but it requires decrypting binaries during execution [1]
or having execute-only memory and decrypting binaries only when
loading them into that memory [20]. Consequently, this approach
has high performance overhead and requires special hardware. An
alternative approach is to leave binaries in executable form, but to
∗This work was supported in part by NSF Grants EIA-0080123,
CCR-0113633, and CNS-0410918

use code obfuscation techniques to make reverse engineering diffi-
cult [9, 10, 11, 12]. The goal here is to deter attackers by making
the cost of reconstructing the high-level structure of a program pro-
hibitively high.

Most of the prior work on code obfuscation and tamper-proofing
has focused on various aspects of decompilation. For example, a
number of researchers suggest relying on the use of difficult static
analysis problems—e.g., involving complex Boolean expressions,
pointers, or indirect control flow—to make it hard to construct a
precise control flow graph for a program [3, 12, 25, 30, 31]. By
contrast, the work described in this paper focuses on making static
disassembly hard. Thus, our work is independent of and com-
plementary to current approaches to code obfuscation. It is inde-
pendent of them because our techniques can be applied regardless
of whether other obfuscating transformations are being used. It is
complementary to them because making a program harder to dis-
assemble adds another barrier to recovering high-level information
about a program.

This paper describes two techniques for obfuscating binaries that
together confound current disassemblers. The primary technique is
to replace control transfer instructions—jumps, calls, and returns—
by instructions that raise traps at runtime; these traps are then fielded
by signal handling code that carries out the appropriate control
transfer. The effect is to replace control transfer instructions with
either apparently innocuous arithmetic or memory operations, or
with what appear to be illegal instructions that suggest an erroneous
disassembly. The secondary technique is to insert (unreachable)
code after traps that contains fake control transfers and that makes
it hard to find the beginning of the true next instructions. We also
disguise the traps and the actions of the signal handler in order to
further conceal what is actually going on. These techniques signif-
icantly extend ones that were introduced in an earlier paper from
our research group [21], and they provide a much higher degree
of obfuscation. In particular, they cause the best disassemblers to
miss from 30 to 80 percent of the instructions in test programs and
to make mistakes on over half of the control flow edges.

The remainder of the paper is organized as follows. Section 2
provides background information on the disassembly process. Sec-
tion 3 describes the new techniques for thwarting disassembly and
explains how they are implemented. Section 4 describes how we
evaluate the efficacy of our approach. Section 5 gives experimental
results for programs in the SPECint-2000 benchmark suite. Sec-
tion 6 describes related work, and Section 7 contains concluding
remarks.

2. DISASSEMBLY ALGORITHMS
The techniques described in this paper thwart the disassembly

process by replacing unconditional control transfers by traps to sig-
nal handlers and by inserting junk “instructions” into the binary at

selected places. To provide the context needed to understand these
techniques and how they work, this section summarizes the opera-
tion of disassemblers.

A machine code file typically consists of a number of different
sections—text, read-only data, etc.—that contain various sorts of
information about the program, together with a header describing
these sections. Among other things, the header contains informa-
tion about the location in the file where the machine instructions
begin (and where program execution begins), and the total size or
extent of these instructions1 [19]. Disassembly refers to the process
of recovering a sequence of assembly code instructions from such
a file, e.g., in a textual format readable by a human being.

Broadly speaking, there are two approaches to disassembly: static
disassembly, where the file being disassembled is examined by the
disassembler but is not itself executed during the course of dis-
assembly; and dynamic disassembly, where the file is executed on
some input and this execution is monitored by an external tool (e.g.,
a debugger) to identify the instructions that are being executed.
Static disassembly processes the entire file all at once, while dy-
namic disassembly only disassembles those instructions that were
executed for the particular input that was used. Moreover, with
static disassembly it is easier to apply various offline program anal-
yses to reason about semantic aspects of the program under consid-
eration. For these reasons, static disassembly is a popular choice
for low level reverse engineering.

This paper focuses on static disassembly. There are two gener-
ally used techniques for this: linear sweep and recursive traver-
sal [26]. The linear sweep algorithm begins disassembly at the in-
put program’s first executable byte, and simply sweeps through the
entire text section disassembling each instruction as it is encoun-
tered. This method is used by programs such as the GNU utility
objdump [24] as well as a number of link-time optimization tools
[8, 22, 28]. The main weakness of linear sweep is that it is prone
to disassembly errors resulting from the misinterpretation of data
that is embedded in the instruction stream (e.g., jump tables). Only
under special circumstances, e.g., when an invalid opcode is en-
countered, can the disassembler become aware of such disassembly
errors.

The recursive traversal algorithm uses the control flow behav-
ior of the program being disassembled in order to determine what
to disassemble. It starts with the program’s entry point, and dis-
assembles the first basic block. When the algorithm encounters a
control flow instruction, it determines the possible successors of
that instruction—i.e., addresses where execution could continue—
and proceeds with disassembly at those addresses. Variations on
this basic approach to disassembly are used by a number of bi-
nary translation and optimization systems [5, 27, 29]. The main
virtue of recursive traversal is that by following the control flow
of a program, it is able to “go around” and thus avoid disassembly
of data embedded in the text section. Its main weakness is that it
depends on being able to determine the possible successors of each
such instruction, which is difficult for indirect jumps and calls.2
The algorithm obviously also depends on being able to find all the
1This applies to most file formats commonly encountered in prac-
tice, including Unix a.out, ELF, COFF, and DOS EXE files. The
information about the entry point and code section size is implicit
in DOS COM files.
2For common cases of indirect jumps, this can be handled by ad
hoc extensions to the basic algorithm. For example, switch state-
ments are often compiled into code that uses jump tables, and the
disassembler can often find the base and size of such a table by
looking for and then analyzing a code pattern that indicates a jump
table is being used. A more general technique is to use “speculative
disassembly” [6]. The idea here is to process undisassembled por-
tions of the text segment that appear to be code, in the expectation
that they might be the targets of indirect function calls.

TRAP code
Bogus code
Code−after

Setup code
Code−before

TRANSFER

(b) Obfuscated code(a) Original code

Code−after

{
Code−before

Figure 1: Summary of Source Code Transformations

instructions that affect control flow. Errors in determining control
flow will result either in failure to disassemble some reachable code
(if the set of targets is underestimated) or erroneous disassembly of
data (if the set of targets is overestimated).

3. SIGNAL-BASED OBFUSCATION
In order to confuse a disassembler, we have to disrupt its notion

of where the instructions are, what they are doing, and what the
control flow is. Our goal is to cause a lot of confusion without actu-
ally changing the observable behavior of the program. The choices
we have for altering the program are (1) changing instructions to
others that produce the same result, and (2) adding instructions that
do not have visible effects. Simple, local changes will obviously
not confuse a disassembler or a human. More global and drastic
changes are required.

Our main obfuscation technique is to change many unconditional
control transfers—jumps, calls, and returns—into code sequences
that cause traps and raise signals, and to add a signal handler to the
program that simulates the effects of the altered control transfers.
This muddies the output of a linear sweep disassembler, because
the control transfer instructions are replaced by seemingly innocu-
ous “normal” instructions, and it confuses a recursive traversal dis-
assembler, because it obscures transfer targets and hence often pre-
vents the disassembler from finding and disassembling reachable
code.

Our secondary obfuscation technique is to add bogus instructions
after the trap points (which are unreachable code) to further con-
fuse a disassembler’s notion of control flow and instruction bound-
aries. In particular, we add a conditional jump, which will be dis-
assembled but will not ever be taken, and we add junk bytes that
will cause the disassembler to incorrectly disassemble one or more
of the real (i.e., original) instructions that actually follow the trap
point.

Below we give an overview of how these techniques are im-
plemented. Then we describe in detail how control transfers are
changed to signal-raising and bogus code, how the signal handler
works, and how we deal with interactions between our signals and
other signals or signal handlers that might be present in the original
program.

3.1 Overview
Figure 1 summarizes how we obfuscate a program. Part (a) con-

tains a fragment of machine code in the original program. TRANS-
FER is a jump, call, or return instruction. For ease of implemen-
tation, we consider only direct jumps and calls—i.e., those whose
target address is specified in the code.3 All return instructions are
considered, because the target of the return is stored in a known
location on the stack. The TRANSFER instruction is preceded and
followed by some other code in the original program; these are in-
dicated by Code-before and Code-after.
3Indirect jumps and calls are much less frequent in practice, so this
restriction has essentially no effect on our obfuscation results.

Figure 1(b) contains the corresponding code fragment in the ob-
fuscated program. The TRANSFER instruction is replaced by three
code sequences, which are described in detail in the next section:

• Setup code, which prepares for raising a signal.

• TRAP code, which causes a trap that raises a signal.

• Bogus code, which will be disassembled but will not actually
be executed.

The code that was before and after the TRANSFER instruction is
unchanged and remains before and after the new code that is in-
serted in the binary in place of the TRANSFER instruction.

When an obfuscated TRANSFER instruction is executed, it causes
a trap that in turn raises a signal. The role of the signal handler is to
transfer control to the original target of the TRANSFER instruction.
To effect this, we build a table that contains mappings from the ad-
dresses of TRAP instructions to the target(s) of the corresponding
TRANSFER instruction. For a jump, the target is the address in the
original instruction. For a call, there are two targets: the address
of the called function, and the address to which the call would nor-
mally return. For a return, the target address will be on the stack
(and hence does not need to be stored in the mapping table).

When our signal handler gets control, the source address S of
the trap that raised the signal is in a known location. (The address
is placed on the stack by the processor when a trap occurs.) Our
signal handler saves this value in a different stack location, then
“tricks” the kernel into returning control to a special block of code,
the Restore block. The Restore block uses the saved value of S
to index the mapping table and retrieve the target address(es). The
Restore block then restores the machine state to what it was just
before the TRANSFER in the original program and finally transfers
control to the original target of the TRANSFER instruction.

We could conceivably obfuscate every jump, call, or return in
the source code. However, this would cause the program to execute
much more slowly because of signal-processing overhead. We al-
low the user to specify a hot-code threshold, and we only obfuscate
control transfers that are not in hot parts of the original program.
(See Section 4 for how the hot-code threshold is defined and com-
puted.) Thus, before obfuscating a program, we first instrument the
program to gather edge profiles, and then we run the instrumented
version on a training input.

The obfuscation process itself has three steps. First, using the
profile data and user-specified threshold, determine which control
transfers should be obfuscated and modify each such instruction as
shown in Figure 1. Second, recompute memory layout and con-
struct the table of mappings from TRAP instructions to target ad-
dresses. Finally, assemble a new, obfuscated binary that includes
our signal handler and restore code.

3.2 Program Obfuscations
We now describe in detail the implementation of the obfuscations

shown in Figure 1. Within our obfuscator, the original program is
represented as an interprocedural control-flow graph (ICFG). The
nodes are basic blocks of machine instructions; the edges represent
the control flow in the program.

We obfuscate all direct jumps, direct calls, and returns that are
in cold code blocks—as specified by a hot-code threshold that is an
input parameter to our obfuscator. In addition, we use a code trans-
formation called branch flipping to increase the number of jumps in
cold code blocks [21]. For example, suppose we have a conditional
branch instruction that branches if the result of a prior comparison
of two values found that they were equal:

je Addr

If this branch is in a cold code block, we replace it by

jne L
jmp Addr

L:

The first instruction flips the sense of the branch, so if the compar-
ison was equal, now the conditional branch falls through and the
code then jumps to Addr. Other kinds of conditional branches can
be flipped similarly. We only do branch flipping in cold code blocks
because it slows the program down, although not nearly as much as
raising a signal.

Obfuscating Control Transfers
After some initialization actions, our obfuscator makes one pass
through the original program to do branch flipping on conditional
branches in cold code. It then makes a second pass through the
program to find and modify all control transfer instructions that are
to be obfuscated.

For a jump instruction, the control flow graph will contain two
basic blocks that contain the following:

Code-before
jmp Addr

Code-after

Again, Code-before and Code-after are instructions from the origi-
nal program. There is a control flow edge from the first basic block
to the block corresponding to location Addr. There is no control-
flow edge from the first block above to the second, but we link all
basic blocks together in the order in which they were laid out in
memory in the original program. This link is important when we
insert bogus code as described below.

The first code block is obfuscated by changing it into the follow-
ing:

Code-before
Setup code
Trap code

The Setup code does three things: (1) reserve space on the stack
that will be used by the signal handler to store the address of the
trap instruction; (2) set a flag that informs the signal handler that
the coming trap is from obfuscated code, not the original program
itself; and (3) save registers and status flags so the original pro-
gram’s state can later be restored to exactly what it was before the
jump instruction. In our implementation on an Intel IA-32 archi-
tecture, space is reserved by pushing a four-byte word on the stack,
the flag is set by moving an arbitrary non-zero value into a global
memory location reserved by the obfuscator, and registers and flags
are saved by executing pusha and pushf instructions.

The Trap code generates a trap, which in turn raises a signal.
We only raise signals for which the default action is to dump core
and terminate the program in order to avoid interfering with sig-
nals or signal handlers that might be in the original program (see
the next section for details). In particular we use illegal instruc-
tion (SIGILL), floating point exception (SIGFPE), and segmenta-
tion violation (SIGSEGV). For each obfuscation point, the obfus-
cator randomly chooses one of these types of signals. For an illegal
instruction on the IA-32 architecture, we use three bytes “0F 3E
08.” To cause a floating point exception, we move a zero into reg-
ister ebx, then divide by that register. To generate a segmentation
faults, we move a zero into register eax, then dereference that reg-
ister in a move instruction.4

4Although we randomize the use of these code sequences, the latter

Return instructions are obfuscated in an identical way. For call
instructions, the only essential difference is that we need to reserve
two stack words so the signal handler has places to store both the
target and return address of the original call. The structure of the
control flow graph is also different for call and return blocks. In all
cases, we retain the ICFG structure of the original program, so that
we can use it later to generate the table that maps trap addresses to
their original targets.

Inserting Bogus Code
After obfuscating a control transfer instruction, we next insert bo-
gus code—a conditional branch and some junk bytes—to further
confuse disassemblers, as shown below.

jmp Addr

Code−before

Code−after

(a) Original code (b) Obfuscated code

Setup code

conditional branch

Code−before

Code−after

trap instruction

junk bytes } unreachable

Addr

Since the trap instruction has the effect of an unconditional con-
trol transfer, the conditional branch immediately following the trap
is “bogus code” that will not be reachable in the obfuscated pro-
gram, and hence it will not be executed. However, since the trap
instruction does not look like a control transfer instruction, the bo-
gus conditional branch is not readily identifiable as being unreach-
able. The conditional branch goes to a junk address that does not
contain actual code. The purpose of adding this instruction is to
make a disassembler think there is another edge in the control flow
graph. The target address is chosen so as not to reveal instructions
that a disassembler would not find on its own. A secondary ben-
efit of such bogus conditional branches is that they help improve
the stealthiness of the obfuscation, since otherwise the disassembly
would produce what appeared to be long sequences of straight-line
code without any branches, which would not resemble code com-
monly encountered in practice.

The junk bytes are the prefix of a legal instruction. The goal is
to cause a disassembler to consume the first few bytes of Code-
after when it completes the legal instruction that starts with the
junk bytes. This will ideally cause it to continue to misidentify
the true instruction boundaries for at least a while. This technique
only works on variable-instruction-length architectures such as the
IA-32. Moreover, disassemblers tend to resynchronize relatively
quickly, so that on average they are confused for only three or four
instructions before again finding the true instruction boundaries. In
our implementation, we use one of five randomly chosen 6-byte in-
structions; we also randomize the register that is used and the order
of the operands, so there are 80 different possibilities in all. For
each prefix of the chosen instruction (from 1 to 5 bytes long), we
calculate how many of the following instructions will be missed
by a disassembler, and then insert the prefix that maximizes dis-
assembly error. (See [21] for details on junk byte insertion and
self-repairing disassembly.)

two are pretty obviously going to cause traps. We have played with
generating random sequences of instructions that have the same
effect—and would be much harder to reverse engineer—but we
have not yet implemented this scheme.

Building the Mapping Table
After obfuscating control flow and inserting bogus code, our ob-
fuscator computes a memory layout for the obfuscated program and
determines final memory addresses. Among these are the addresses
of all the trap instructions that have been inserted.

The obfuscator then goes through the control flow graph and
gathers the information it needs to build the table that maps trap
locations to original targets. The locations of the original targets in
the obfuscated program can be determined from the memory layout
together with the control flow edges that have been retained in the
ICFG. For example, when a jump is replaced by a trap, there is still
a jump control flow edge from the code block that ends with the
trap to the code block that was the target of the jump.

Suppose that N control transfer instructions have been obfus-
cated. Then there are N rows in the mapping table, one for each
trap point. Each row contains a flag that indicates the type of trans-
fer that was replaced, and zero, one, or two target addresses, de-
pending on the value of the flag. To make it hard to reverse engineer
the contents and use of this table, we use two techniques. First, we
generate a perfect hash function that maps the N trap addresses to
distinct integers from 0 to N − 1 [14], and we use this function to
get indices into the mapping table. This hides the values of the trap
addresses, because they do not appear in the obfuscated program
itself. We generate the machine code for the perfect hash function
after constructing the mapping table. This machine code is quite
inscrutable and hence hard to reverse engineer.

Second, to make it hard to discover the target addresses in the
mapping table, we do not store them directly. Instead, when con-
structing the mapping table, in place of each target address T we
store a value XT that is the XOR of T and the corresponding trap
address S. To later retrieve a target address for trap address S, we
(1) use the perfect hash function on S to get the index of the ap-
propriate row in the mapping table, (2) load the appropriate stored
value XT into a register, and then (3) XOR the contents of the
register with S to get back the real target address. In this way, the
stored entries in the mapping table always look like arbitrary strings
of bits.

3.3 Signal Handling
When an obfuscated control transfer instruction traps and raises

a signal, a sequence of actions occurs, the end result of which is that
control is transfered back to the program at the target address of the
original control transfer instruction. Below we give an overview
of how signal handling is implemented in Linux (and other Unix-
based systems), then we describe the actions we take to handle sig-
nals and then to restore the execution context of the original pro-
gram.

Overview
When an instruction raises a signal, the processor stores the address
S of the instruction on the stack, then traps into the kernel. If no
handler has been installed, the kernel takes the default action for
the signal.

If a signal-handling function has been installed, the kernel calls
the function. (An application program installs a signal handler by
using the signal system call.) When the signal handler returns,
it goes to a kernel restore function rather than back to the kernel
trap handler. This function restores the program’s state, and then
transfers control back to user code at the trap address (S).

Figure 2 shows the components and control transfers that nor-
mally occur when a program raises a signal at address S and has
installed a signal handler that returns back to the program at the
same address. Figure 3 shows the components and control trans-
fers that occur in our implementation. The essential differences are

Kernel trap handler

User’s signal handlerS: Trap instruction

Kernel restore function

Figure 2: Normal Signal Handling

S: Trap instruction

Kernel trap handler

Kernel restore function

Our signal handler

Our restore function

T: Target instruction

Figure 3: Our Signal Handling Path

that we return control to a different target address T , and we do so
by causing the kernel to transfer control to our restore code rather
than back to the trap address.

Handler Actions
The main role of our signal handler is to cause the kernel to return
control to our restore code, which then returns to the user program
at the original target of the obfuscated control transfer instruction,
as shown in Figure 3. We do this when a signal is raised from a trap
location that we inserted in the binary. However, other instructions
in the original program might raise the illegal instruction, floating
point exception, or segmentation fault signals. To tell the differ-
ence, we use a global memory location my signal that is initial-
ized to zero. In the Setup code before each of the traps we insert
in the program, we set this location to a non-zero value, and we
later reinitialize it to zero in our signal handler. Thus, we can tell
whether a signal was raised by our code or by the original program.

If a signal was raised from one of our locations, we set up the
control-flow path shown in Figure 3. If not, we take one of sev-
eral actions depending on whether the user specified a handler or
specified that the signal was to be ignored.

The full algorithm for our signal handler is given in Figure 4.
The instances of “reinstall this handler” in the code are needed on
Linux to re-inform the kernel that we want to handle these three
types of signals.5

One subtlety that has to be dealt with, in order to preserve the se-
mantics of the original program, is that of user-defined signal han-
dlers. The issue is that a program may define its own handlers for
signals (or specify that the signal is to be ignored), including sig-
nals used by our obfuscator, and may in fact dynamically change
the handler associated with any given signal as the program exe-
cutes.

A program installs a user-defined handler for a given signal by
calling the signal() function in the system-call library. In a bi-
nary, this becomes a call to bsd signal(). To deal with user-
5Reinstalling the handler also makes our implementation more
portable. However, operating systems differ in their semantics for
signal handlers. For example, we would not have to reinstall the
handler on BSD Unix.

if (my signal> 0) { /* signal from obfuscation code */
reinstall this handler;
my signal = 0;
move fault address S into the four bytes reserved on the

stack right before the trap;
overwrite kernel restore’s return address with

address of my restore;
}
else { /* signal raised by user program */

look up how user handles this signal;
if (no handler installed or user installed default action) {

install default action; /* so trap again and terminate */
}
else if (user installed ignore action) {

reinstall this handler;
}
else { /* user installed own handler */

call user’s handler; /* and return here */
reinstall this handler

}
}
return;

Figure 4: Signal Handler Actions

my restore:
invoke perfect hash function on trap address;
use returned index to get tag and targets from mapping table;
if (tag == return) {

pop an address off the stack;
}
else if (tag == jump) {

overwrite return address with jump target address;
}
else { /* tag == call */

overwrite return address with address of call target;
overwrite deeper return with address of original return;

}
restore saved registers and flags;
return;

Figure 5: Restore Code Actions

installed handlers, we statically rewrite the program binary to in-
tercept all calls to bsd signal() at runtime. The intercepting
code inspects the arguments to the system call to identify the signal
s and the handler f . If s is not a signal used by the obfuscator,
then we go ahead and execute the call bsd signal(s, f), which
installs the handler f for the signal s. However, if s is a signal used
by our obfuscator, then—instead of installing f as a handler—we
remember the user-defined association between s and f in a table
T . T [j] indicates the action associated with signal j: the default
action, ignoring the signal, or the address of a handler function to
be invoked when that signal is raised. When a signal is raised from
the original program code, the signal handler code in Figure 4 con-
sults this table to determine the appropriate course of action. Since
the table T is updated appropriately whenever bsd signal()
is called to (re)define the handler for any signal used by our obfus-
cator, this allows us to preserve the semantics of the program even
if the handler associated with a signal changes dynamically.

Restore Actions
In the normal case where our signal handler is processing one of the
traps we inserted in the program, it overwrites the kernel restore
function’s return address with the address of our restoration code
my restore. That code (1) invokes the perfect hash function on
the trap address S (which was put in the reserved stack space by our
signal handler), (2) looks up the original target address, (3) resets
the stack frame as appropriate for the type of control transfer, (4)
restores the saved registers and status flags, and finally (5) transfers
control (via return) to the original target address.

The full algorithm for our restore code is given in Figure 5. For
obfuscated return instructions, the original return address will al-
ready be on the stack, one word below the current top of the stack,
because it was placed there by the original code. For obfuscated
call instructions, we use the two reserved stack locations to store
the target of the call and, below it on the stack, the original return
address.

Interaction With Other Signals
If the original program raises the kinds of signals that we use for
traps, then we handle them as shown in Figure 4. However, the
user might install other signal handlers, and these can interact with
ours. For example, one of the SPECint-95 benchmark programs,
m88ksim, installs a handler for SIGINT, the interrupt signal. If we
obfuscate that program, run the code, and repeatedly interrupt the
program, eventually it will cause a segmentation fault and crash.
The reason is that there is a race condition between our interrupt
handler and the user-installed SIGINT handler. In particular, if we
interrupt the program while it happens to be executing in our han-
dler, the program crashes.

To solve this type of problem, our signal handler needs to de-
lay processing of other signals that might be raised. On Unix this
can be done by having the signal handler call the sigprocmask
function, or by using sigaction when we (re)install the handler.
Once our trap processing code gets back to the Restore block of
the obfuscated program, it can safely be interrupted because it is
through manipulating kernel addresses. Our current implementa-
tion does not yet block other signals.

An even worse problem would occur in a multithreaded program,
because multiple traps could occur and have to be handled at the
same time. Signal handling is not thread safe in general in Unix
systems, so our obfuscation method cannot be used in an arbitrary
multithreaded program. However, this is a limitation of Unix, not
our method.

4. EVALUATION
We measure the efficacy of obfuscation in two ways: by the

extent of incorrect disassembly of the input, and by the extent of
errors in control flow analysis of the disassembled input. These
quantities are related, in the sense that an incorrect disassembly of
a control transfer instruction will result in a corresponding error in
the control flow graph obtained for the program. However, it is
possible, in principle, to have a perfect disassembly and yet have
errors in control flow analysis because control transfer instructions
have been disguised as innocuous arithmetic instructions or bogus
control transfers have been inserted.

4.1 Evaluating Disassembly Errors
We measure the extent of disassembly errors using a measure

we call the confusion factor for the instructions, basic blocks, and
functions. Intuitively, the confusion factor measures the fraction
of program units (instructions, basic blocks, or functions) in the
obfuscated code that were incorrectly identified by a disassembler.
More formally, let A be the set of all actual instruction addresses,

i.e., those that would be encountered when the program is executed,
and P the set of all perceived instruction addresses, i.e., those ad-
dresses produced by a static disassembly. A − P is the set of ad-
dresses that are not correctly identified as instruction addresses by
the disassembler. We define the confusion factor CF to be the frac-
tion of instruction addresses that the disassembler fails to identify
correctly:6

CF = |A − P |/|A|.

Confusion factors for functions and basic blocks are calculated anal-
ogously: a basic block or function is counted as being “incorrectly
disassembled” if any of the instructions in it is incorrectly disas-
sembled. The reason for computing confusion factors for basic
blocks and functions as well as for instructions is to determine
whether the errors in disassembling instructions are clustered in a
small region of the code, or whether they are distributed over sig-
nificant portions of the program.

4.2 Evaluating Control Flow Errors
When comparing the control flow structure of the disassembled

program Pdisasm with that of the original program Porig , there are
two possible kinds of errors that can occur. First, Pdisasm may con-
tain some edge that does not appear in Porig , i.e., the disassembler
may mistakenly find a control flow edge where the original program
did not have one. Second, Pdisasm may not contain some edge that
appears in Porig , i.e., the disassembler may fail to find an edge that
was present in the original program. We term the first kind of error
overestimation errors (written ∆over) and the second kind under-
estimation errors (written ∆under), and express them relative to the
number of edges in the original program. Let Eorig be the set of
control flow edges in the original program and Edisasm the set of
control flow edges identified by the disassembler, then:

∆over = |Edisasm − Eorig |/|Eorig |
∆under = |Eorig − Edisasm |/|Eorig |

Even if we assume a perfect “attack disassembler” that does not in-
cur any disassembly errors, the disassembly produced will contain
control flow errors arising from two sources. First, control transfers
that have been transformed to trap-raising instructions will fail to
be identified as control transfers. Second, bogus control transfers
introduced by the obfuscator will be identified as control transfers.
We can use this to bound the control flow errors even for a perfect
disassembly. Suppose that ntrap control flow edges are lost from
a program due to control transfer instructions being converted to
traps, and nbogus bogus control flow edges are added by the obfus-
cator. Then, a lower bound on underestimation errors min ∆under

is obtained when the only control transfers that the attack disassem-
bler fails to find are those that were lost due to conversion to trap
instructions:

min ∆under = ntrap/Eorig .

An upper bound on overestimation errors max ∆over is obtained
when every bogus conditional branch inserted by the obfuscator is
reported by the disassembler:

max ∆over = nbogus/Eorig .

4.3 Defining Hot Code
6We also considered taking into account the set P −A of addresses
that are erroneously identified as instruction addresses by the disas-
sembler, but rejected this approach because it “double counts” the
effects of disassembly errors.

0.6 0.7 0.8 0.9
Confusion Factor (IDA Pro, instructions)

1.0

10.0

100.0

Sl
ow

do
w

n

1.000

0.999

0.990

0.950

0.900

0.800

Figure 6: The tradeoff between obfuscation and speed

As mentioned in Section 3, we transform jumps to signal-raising
instructions only if the jump does not occur in a “hot” basic block.
To evaluate the efficacy of obfuscation, therefore, we have to spec-
ify what it means for a basic block to be “hot,” and then examine
the effect of how the definition of “hot” blocks affects the extent
of obfuscation achieved and the performance of the resulting code.
To identify the “hot,” or “frequently executed,” basic blocks, we
start with a (user-defined) fraction θ (0.0 < θ ≤ 1.0) that specifies
what fraction of the total number of instructions executed at run-
time should be accounted for by “hot” basic blocks. For example,
θ = 0.8 means that hot blocks should account for at least 80% of
all the instructions executed by the program. More formally, let
the weight of a basic block be the number of instructions in the
block multiplied by its execution frequency, i.e., the block’s con-
tribution to the total number of instructions executed at runtime.
Let tot instr ct be the total number of instructions executed by the
program, as given by its execution profile. Given a value of θ, we
consider the basic blocks b in the program in decreasing order of
execution frequency, and determine the largest execution frequency
N such that

X

b:freq(b)≥N

weight(b) ≥ θ · tot instr ct .

Any basic block whose execution frequency is at least N is consid-
ered to be hot.

Note that at θ = 1.0, this implies that any basic block with
nonzero execution count, i.e., which is executed at least once on
the profiling input, will be considered “hot.”

5. EXPERIMENTAL RESULTS
We evaluated the efficacy of our techniques using ten programs

from the SPECint-2000 benchmark suite.7 Our experiments were
run on an otherwise unloaded 2.4 GHz Pentium IV system with
1 GB of main memory running RedHat Linux (Fedora Core 3).
The programs were compiled with gcc version 3.2.2 at optimization
level -O3. The programs were profiled using the SPEC training in-
puts and these profiles were used to identify any hot spots during
our transformations. The final performance of the transformed pro-
grams were then evaluated using the SPEC reference inputs. Each
execution time reported was derived by running seven trials, remov-
ing the highest and lowest times from the sampling, and averaging
the remaining five.

We experimented with three different “attack disassemblers” to
evaluate our techniques: GNU objdump [24]; IDA Pro [13], a
7We did not use two programs from this benchmark suite: eon and
vpr. We had problems building eon, and vpr did not run properly
because of a bug in our profiling code that had nothing to do with
obfuscation.

commercially available disassembly tool that is generally regarded
to be among the best disassemblers available;8 and an exhaustive
disassembler by Kruegel et al., engineered specifically to handle
obfuscated binaries [18]. Objdump uses a straightforward linear
sweep algorithm, while IDA Pro uses recursive traversal. The ex-
haustive disassembler of Kruegel et al. explicitly takes into ac-
count the possibility that the input binary may be obfuscated by
not making any assumptions about instruction boundaries. Instead,
it considers alternative disassemblies starting at every byte in the
code region of the program, then examines these alternatives using
a variety of statistical and heuristic analyses to discard those that
are unlikely or impossible. Kruegel et al. report that this approach
yields significantly better disassemblies on obfuscated inputs than
other existing disassemblers [18]; to our knowledge, the exhaus-
tive disassembler is the most sophisticated disassembler currently
available.

Obfuscation/Speed Tradeoff
Given the definition of “hot code” in Section 4.3, as the hot code
threshold θ is reduced, less and less of the code is counted as “hot,”
and more and more of it remains available for obfuscation, which
in turn implies an increase in runtime overheads due to the obfusca-
tion. Intuitively this means that as θ is decreased, we should expect
an increase in the extent of obfuscation seen, accompanied by a
drop in execution speed.

The effect of varying the hot code threshold θ on performance
(both obfuscation and speed) is shown in Figure 6 for a number
of different threshold values ranging from 0.80 ≤ θ ≤ 1.00. For
each threshold value, Figure 6 shows the geometric mean of the
confusion factor, with a horizontal bar showing the range of val-
ues encountered for the confusion factor for our benchmarks at that
threshold and a vertical bar showing the range of values for the
slowdown. (To reduce clutter, we show only the instruction confu-
sion factor for IDA Pro; the results for the other disassemblers are
analogous.) Ideally we want to have high confusion factors and low
slowdowns, i.e., points close to the x-axis and far from the y-axis.

We can see that as the threshold is decreased from θ = 1.00
to θ = 0.80, the mean confusion factor goes from about 0.8 to
about 0.9: an increase of roughly 10%. At the same time, however,
the performance of the obfuscated code drops dramatically, with
the mean slowdown increasing from 1.35 at θ = 1.00 to 86.0 at
θ = 0.80. Thus, choosing a threshold θ of 1.0 still results in a con-
siderable amount of obfuscation being achieved, but without exces-
sive performance penalty. For the purposes of this paper, therefore,
we give measurements for θ = 1.0.

Disassembly Error
The extent of disassembly error, as measured by confusion factors
(Section 4.1) is shown in Figure 7(a). The work described here fo-
cused primarily on disguising control transfer instructions by trans-
forming them into signal-raising instructions, so it does not come as
a surprise that the straightforward linear sweep algorithm used by
the objdump disassembler has the best performance. Even here,
however, over 30% of the instructions in the program, 66% of the
basic blocks, and 86% of the functions, on average, are not dis-
assembled correctly. The other disassemblers, which rely on con-
trol flow information to guide their disassembly, fare much worse:
Kruegel et al.’s exhaustive disassembler fails on 57% of the instruc-
tions, 75% of the basic blocks and almost 90% of the functions on
8We used IDA Pro version 4.7 for the results reported here, except
for the gcc program, on which IDA Pro version 4.7 did not termi-
nate after three days and had to be killed; for the gcc benchmark,
the numbers reported are using IDA Pro version 4.3. For the re-
maining benchmarks, the data reported by these two versions of
IDA Pro typically differed by less than 0.1%.

PROGRAM OBJDUMP EXHAUSTIVE IDA PRO
Instructions Basic blocks Functions Instructions Basic blocks Functions Instructions Basic blocks Functions

bzip2 33.50 70.90 85.40 58.48 78.82 92.10 87.07 89.05 84.19
crafty 30.71 66.05 84.68 53.62 73.82 83.87 78.98 82.02 69.35
gap 31.10 64.14 87.72 57.93 74.88 91.27 82.24 82.37 81.75
gcc 29.30 60.47 86.81 56.16 71.21 90.48 69.84 66.96 80.66
gzip 33.68 70.99 86.77 57.59 78.62 92.28 87.94 89.62 83.62
mcf 34.20 70.93 84.15 71.47 85.62 88.87 88.01 89.79 81.32
parser 31.50 64.77 83.46 54.60 72.22 87.03 78.96 78.67 73.32
perlbmk 31.25 65.08 86.68 54.77 73.30 89.34 73.31 73.03 80.78
twolf 30.71 64.84 84.24 54.63 73.55 86.68 81.13 82.40 77.79
vortex 28.68 63.86 92.01 53.60 73.57 94.49 71.31 73.30 90.46
GEOM. MEAN: 31.41 66.12 86.16 57.09 75.45 89.59 79.62 80.37 80.13

(a) Disassembly Errors (Confusion Factor, %)

PROGRAM Eorig ntrap nbogus max min OBJDUMP EXHAUSTIVE IDA PRO
∆over ∆under ∆over ∆under ∆over ∆under ∆over ∆under

bzip2 47331 21227 40420 85.39 44.84 58.00 72.39 32.66 81.18 5.87 90.48
crafty 54954 22506 43288 78.77 40.95 53.40 65.52 29.86 74.70 7.67 82.91
gap 92803 36759 71468 77.01 39.60 52.26 64.21 28.02 75.65 7.45 83.20
gcc 204756 77288 140154 68.44 37.74 46.57 58.26 23.65 70.22 12.23 68.65
gzip 47765 21564 41038 85.91 45.14 58.06 72.74 33.97 81.06 5.35 91.22
mcf 41807 18435 35612 85.18 44.09 57.41 72.49 22.57 87.49 5.74 91.28
parser 54524 21569 41954 76.94 39.55 52.39 64.13 29.27 72.63 8.31 79.08
perlbmk 100341 41243 77702 77.43 41.10 52.86 64.37 29.30 73.82 12.47 75.39
twolf 57210 22874 44730 78.18 39.98 53.01 64.33 30.07 74.07 7.53 83.36
vortex 87799 36077 65044 74.08 41.09 50.54 61.25 27.69 72.59 10.23 74.04
GEOM. MEAN: 78.56 41.34 53.34 65.80 28.50 76.18 7.94 81.65

(b) Control Flow Error (%)

Key: Eorig : no. of edges in original program max ∆over : upper bound on overestimation errors
ntrap : no. of control flow edges lost due to trap conversion min ∆under : lower bound on underestimation errors
nbogus : no. of bogus control flow edges added

Figure 7: Efficacy of obfuscation (θ = 1.0)

average; IDA Pro fails to disassemble close to 80% of the instruc-
tions and just over 80% of the basic blocks and functions in the
programs. Part of the reason for IDA Pro’s high degree of failure
(especially compared to the other two disassemblers) is that it only
disassembles addresses that (it believes) can be guaranteed to be in-
struction addresses. Because of this, it abandons disassembly of a
function from the point where it encounters an illegal instruction up
to the next point that is identifiably the target of a control transfer
from already-disassembled code: the intervening bytes—which in
our case is very often the remainder of the function, since most con-
trol transfers have been obfuscated to resemble other instructions—
is simply presented to the user as a jumble of raw hex data.

Overall, the instruction confusion factors show that a significant
portion of the binaries is not correctly disassembled; the basic block
and function confusion factors show that the errors in disassembly
are distributed over most of the program. Taken together, these data
show that our techniques are effective even against state-of-the-art
disassembly tools.

Control Flow Obfuscation
Figure 7(b) shows the effect of our transformations in obfuscating
the control flow graph of the program. The second column gives,
for each program, the actual number of control flow edges in the
obfuscated program, counted as follows: each conditional branch
gives rise to two control flow edges; each unconditional branch (di-
rect or indirect) gives rise to a single edge; and each function call

gives two control flow edges—one corresponding to a “call edge”
to the callee’s entry point, the other to a “return edge” from the
callee back to the caller. Column 3 gives the number of control
flow edges removed due to the conversion of control flow instruc-
tions to traps, while column 4 gives the number of bogus control
flow edges added by the obfuscator. Columns 5 and 6 give, re-
spectively, an upper bound on the overestimation error and a lower
bound on the underestimation error. The remaining columns give,
for each attack disassembler, the extent to which it incurs errors in
constructing the control flow graph of the program, as discussed in
Section 4.2.

It can be seen, from Figure 7(b), that none of the three attack dis-
assemblers tested fares very well at constructing the control flow
graph of the program. Objdump fails to find almost 66% of the
control flow edges in the original program; at the same time, it re-
ports over 53% spurious edges (relative to the number of original
edges in the program) that are not actually present in the program.
The exhaustive disassembler fails to find over 76% of the edges in
the original program, and reports over 28% spurious edges. IDA
Pro fails to find close to 82% of the control flow edges in the orig-
inal program, and reports almost 8% spurious edges. The last of
these numbers—which is significantly smaller than the correspond-
ing values for the other two disassemblers—is misleadingly low:
the reason IDA Pro does not report many of the spurious condi-
tional branches introduced by our obfuscator is not that it is partic-
ularly good at identifying spurious control flow, but rather that it

EXECUTION TIME (SECS)
PROGRAM Original Obfuscated Slowdown

(T0) (T1) (T1/T0)

bzip2 283.070 327.491 1.156
crafty 139.115 180.038 1.294
gap 146.357 485.215 3.315
gcc 148.169 314.121 2.120
gzip 217.923 218.939 1.004
mcf 428.486 427.377 0.997
parser 294.760 292.528 0.992
perlbmk 201.289 383.002 1.902
twolf 571.445 575.719 1.007
vortex 234.530 232.944 0.993
GEOM. MEAN 1.348

Figure 8: Effect of obfuscation on execution speed (θ = 1.0)

simply fails to disassemble large portions of the program.
Also significant are the error bounds reported in columns 5 and

6 of Figure 7(b). These numbers indicate that, even if we suppose
perfect disassembly, the result would incur up to 78.6% overesti-
mation error and at least 41.3% underestimation error.

Execution Speed
Figure 8 shows the effect of obfuscation on execution speed. For
some programs, such as gzip, mcf, parser, twolf, and vortex, for
which the execution characteristics on profiling input(s) closely
match those on the reference input, there is essentially no slow-
down (a few benchmarks run very slightly faster after obfuscation;
we believe this effect is due to a combination of cache effects and
experimental errors resulting from clock granularity). For others,
such as gap and gcc, the profiling inputs are not as good predictors
of the runtime characteristics of the program on the reference in-
puts, and this results in significant slowdowns: a factor of 3.3 for
gap and 2.1 for gcc. The mean slowdown seen, for all ten bench-
marks, is just under 35%.

Program Size
Figure 9 shows the impact of obfuscation on the size of the text
and initialized data sections. It can be seen that the size of the text
section increases by factors ranging from 2.33 (crafty and vortex)
to almost 2.7 (bzip2, gzip, mcf), with a mean increase of a factor of
2.5. The relative growth in the size of the initialized data section is
considerably larger, ranging from a factor of about 13 (crafty) to a
factor of just over 67 (twolf), with a mean growth of a factor of 32.
The growth in the size of the initialized data is due to the addition of
the mapping tables used to compute the type of each branch as well
as its target address. However, this apparent large relative growth
in the data section size is due mainly because the initial size of this
section is not very large. When we consider the total increase in
memory requirements due to our technique, obtained as the sum of
the text and initialized data sections, we see that it ranges from a
factor of 2.8 (crafty, vortex) to about 3.4 (gzip, mcf), with a mean
growth of a factor of about 3.

The increase in the size of the text section arises from three
sources. The first of these is the code required to set up and raise
the trap for each obfuscated control transfer instruction. The sec-
ond is the junk bytes and bogus conditional branch inserted af-
ter a trap instruction. Finally, there is the signal handler and re-
store code. In our current implementation, the first two of these
sources—the setup code for a trap and bogus code inserted after a
trap—introduces on average an additional 30 bytes of memory for
each obfuscated control transfer instruction. This accounts for over
99% of the total increase in the text section size. Each obfuscated
control transfer also adds three memory words (12 bytes) to the ini-

tialized data section, accounting for the increase in the size of this
section.

6. RELATED WORK
The earliest work on the topic of binary obfuscation that we are

aware of is by Cohen, who proposes overlapping adjacent instruc-
tions to fool a disassembler [7]. We are not aware of any actual
implementations of this proposal, and our own experiments with
this idea proved to be disappointing. More recently, we proposed
an approach to make binaries harder to disassemble using a combi-
nation of two techniques: the judicious insertion of “junk bytes” to
throw off disassembly; and the use of a device called “branch func-
tions” to make it harder to identify branch targets [21]. These tech-
niques proved effective at thwarting most disassemblers, including
the commercial IDA Pro system.

There has been some recent work by Kapoor [17] and Kruegel
et al.[18] focusing on disassembly techniques aimed specifically
at obfuscated binaries. They work around the possibility of “junk
bytes” inserted in the instruction stream by producing an exhaustive
disassembly for each function, i.e., where a recursive disassembly
is produced starting at every byte in the code for that function. This
results in a set of alternative disassemblies, not all of which are
viable. The disassembler then uses a variety of heuristic and statis-
tical reasoning to rule out alternatives that are unlikely or impossi-
ble. To our knowledge, these exhaustive disassemblers are the most
sophisticated disassemblers currently available. One of the “attack
disassemblers” used for the experiments described in this paper is
an implementation of Kruegel et al.’s exhaustive disassembler.

There is a considerable body of work on code obfuscation that
focuses on making it harder for an attacker to decompile a pro-
gram and extract high level semantic information from it [3, 12,
25, 30, 31]. Typically, these authors rely on the use of computa-
tionally difficult static analysis problems, e.g., involving complex
Boolean expressions, pointers, or indirect control flow, to make it
harder to construct a precise control flow graph for a program. Our
work is orthogonal to these proposals, and complementary to them.
We aim to make a program harder to disassemble correctly, and to
thereby sow uncertainty in an attacker’s mind about which portions
of a disassembled program have been correctly disassembled and
which parts may contain disassembly errors. If the program has al-
ready been obfuscated using any of these higher-level obfuscation
techniques, our techniques add an additional layer of protection that
makes it even harder to decipher the actual structure of the program.

Even greater security may be obtained by maintaining the soft-
ware in encrypted form and decrypting it as needed during execu-
tion, as suggested by Aucsmith [1]; or using specialized hardware,
as discussed by Lie et al. [20]. Such approaches have the disad-
vantages of high performance overhead (in the case of runtime de-
cryption in the absence of specialized hardware support) or a loss
of flexibility because the software can no longer be run on stock
hardware.

7. CONCLUSIONS
This paper has described a new approach to obfuscating exe-

cutable binary programs and evaluated its effectiveness on pro-
grams in the SPECint-2000 benchmark suite. Our goals are to make
it hard for disassemblers to find the real instructions in a binary and
to give them a mistaken notion of the actual control flow in the pro-
gram. To accomplish these goals, we replace many control transfer
instructions by traps that cause signals, inject signal handling code
that actually effects the original transfers of control, and insert bo-
gus code that further confuses disassemblers.

These obfuscations confuse even the best disassemblers. On av-
erage, the GNU objdump program [24] misunderstands over 30%

TEXT SECTION (BYTES) INITIALIZED DATA SECTION (bytes) COMBINED: TEXT+DATA (bytes)
PROGRAM Original Obfuscated Change Original Obfuscated Change Original Obfuscated Change

(T0) (T1) (T1/T0) (D0) (D1) (D1/D0) (C0 = T0 + D0) (C1 = T1 + D1) (C1/C0)
bzip2 347,363 929,500 2.68 6984 245560 35.16 354347 1175060 3.32
crafty 458,163 1,067,502 2.33 20,420 267,252 13.08 478583 1334754 2.79
gap 678,579 1,697,748 2.50 7,380 424,212 57.48 685959 2121960 3.09
gcc 1,402,235 3,376,181 2.41 22,924 814,592 35.53 1425159 4190773 2.94
gzip 349,411 939,630 2.69 6,604 249,044 37.71 356015 1188674 3.34
mcf 300,723 809,448 2.69 3,796 213,332 56.19 304519 1022780 3.36
parser 395,203 987,618 2.50 6,340 246,368 38.85 401543 1233986 3.07
perlbmk 731,659 1,822,820 2.49 33,572 472,628 14.07 765231 2295448 3.00
twolf 458,383 1,089,504 2.38 3,876 260,428 67.18 462259 1349932 2.92
vortex 689,575 1,605,416 2.33 24,332 396,764 16.30 713907 2002180 2.80
GEOM. MEAN 2.50 32.18 3.06

Figure 9: Effect of obfuscation on text and data section sizes (θ = 1.0)

of the original instructions, over-reports the control flow edges by
50%, and misses nearly 66% of the original control flow edges.
The IDA Pro system [13], which is considered the best commercial
disassembler, fails to disassemble nearly 80% of the original in-
structions, over-reports control flow edges by about 8%, and under-
reports control flow edges by nearly 82%. A recent disassembler
[18] that has been designed to deal with obfuscated programs fails
to disassemble over 57% of the instructions, over-reports control
flow edges by 28%, and under-reports control flow edges by over
76%.

These results indicate that we successfully make it hard to disas-
semble programs, even when we only obfuscate code that is in cold
code blocks—i.e., code that was not executed on a profiling run
with training input. If we obfuscate more of the code, we can con-
fuse disassemblers even more. However, our obfuscation method
slows down program execution, so there is a tradeoff between the
degree of obfuscation and execution time. When we obfuscate only
cold code blocks, the average slow-down is about 35%, but this re-
sult is skewed by three benchmarks for which the training input is
not a very good predictor for execution on the reference input. On
programs where the training input is a good predictor, the slow-
down is negligible. An interesting possibility, which we have not
explored, would be selectively to obfuscate some of the hot code,
in particular, that which the creator of the code especially wants to
conceal.

Acknowledgements
We are grateful to Christopher Kruegel for the use of the code for
his exhaustive disassembler for our experiments.

8. REFERENCES
[1] D. Aucsmith. Tamper-resistant software: An

implementation. In Information Hiding: First International
Workshop: Proceedings, volume 1174 of Lecture Notes in
Computer Science, pages 317–333. Springer-Verlag, 1996.

[2] J. P. Bowen and P. T. Breuer. Decompilation. In The REDO
Compendium: Reverse Engineering for Software
Maintenance, chapter 10, pages 131–138. 1993.

[3] W. Cho, I. Lee, and S. Park. Against intelligent tampering:
Software tamper resistance by extended control flow
obfuscation. In Proc. World Multiconference on Systems,
Cybernetics, and Informatics. International Institute of
Informatics and Systematics, 2001.

[4] C. Cifuentes. Reverse Compilation Techniques. PhD thesis,
Queensland University of Technology, Australia, July 1994.

[5] C. Cifuentes and K. J. Gough. Decompilation of binary

programs. Software—Practice and Experience,
25(7):811–829, July 1995.

[6] C. Cifuentes and M. Van Emmerik. UQBT: Adaptable binary
translation at low cost. IEEE Computer, 33(3):60–66, March
2000.

[7] F. B. Cohen. Operating system protection through program
evolution, 1992.
http://all.net/books/IP/evolve.html.

[8] R. S. Cohn, D. W. Goodwin, and P. G. Lowney. Optimizing
Alpha executables on Windows NT with Spike. Digital
Technical Journal, 9(4):3–20, 1997.

[9] C. Collberg and C. Thomborson. Software watermarking:
Models and dynamic embeddings. In Proc. 26th. ACM
Symposium on Principles of Programming Languages
(POPL 1999), pages 311–324, January 1999.

[10] C. Collberg and C. Thomborson. Watermarking,
tamper-proofing, and obfuscation – tools for software
protection. IEEE Transactions on Software Engineering,
28(8), August 2002.

[11] C. Collberg, C. Thomborson, and D. Low. Breaking
abstractions and unstructuring data structures. In Proc. 1998
IEEE International Conference on Computer Languages,
pages 28–38.

[12] C. Collberg, C. Thomborson, and D. Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In Proc.
25th. ACM Symposium on Principles of Programming
Languages (POPL 1998), pages 184–196, January 1998.

[13] DataRescue sa/nv, Liége, Belgium. IDA Pro.
http://www.datarescue.com/idabase/.

[14] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a
sparse table with O(1) worst case access time. Journal of the
ACM, 31(3):538–544, July 1984.

[15] C. R. Hollander. Decompilation of object programs. PhD
thesis, Stanford University, 1973.

[16] G. L. Hopwood. Decompilation. PhD thesis, University of
California, Irvine, 1978.

[17] A. Kapoor. An approach towards disassembly of malicious
binaries. Master’s thesis, University of Louisiana at
Lafayette, 2004.

[18] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna. Static
disassembly of obfuscated binaries. In Proc. 13th USENIX
Security Symposium, August 2004.

[19] J. R. Levine. Linkers and Loaders. Morgan Kaufman
Publishers, San Francisco, CA, 2000.

[20] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for copy

and tamper resistant software. In Proc. 9th. International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IX), pages
168–177, November 2000.

[21] C. Linn and S.K. Debray. Obfuscation of executable code to
improve resistance to static disassembly. In Proc. 10th. ACM
Conference on Computer and Communications Security
(CCS 2003), pages 290–299, October 2003.

[22] R. Muth, S. K. Debray, S. Watterson, and K. De Bosschere.
alto : A link-time optimizer for the Compaq Alpha.
Software—Practice and Experience, 31:67–101, January
2001.

[23] A. Mycroft. Type-based decompilation. In Proc. European
Symposium on Programming, volume 1576 of
Springer-Verlag LNCS, 1999.

[24] Objdump. GNU Manuals Online. GNU Project—Free
Software Foundation.
http://www.gnu.org/manual/binutils-2.10.1/
html chapter/binutils 4.html.

[25] T. Ogiso, Y. Sakabe, M. Soshi, and A. Miyaji. Software
obfuscation on a theoretical basis and its implementation.
IEEE Trans. Fundamentals, E86-A(1), January 2003.

[26] B. Schwarz, S. K. Debray, and G. R. Andrews. Disassembly
of executable code revisited. In Proc. IEEE 2002 Working
Conference on Reverse Engineering (WCRE), pages 45–54,
October 2002.

[27] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G.
Robinson. Binary translation. Communications of the ACM,
36(2):69–81, February 1993.

[28] A. Srivastava and D. W. Wall. A practical system for
intermodule code optimization at link-time. Journal of
Programming Languages, 1(1):1–18, March 1993.

[29] H. Theiling. Extracting safe and precise control flow from
binaries. In Proc. 7th Conference on Real-Time Computing
Systems and Applications, December 2000.

[30] C. Wang, J. Davidson, J. Hill, and J. Knight. Protection of
software-based survivability mechanisms. In Proc.
International Conference of Dependable Systems and
Networks, July 2001.

[31] C. Wang, J. Hill, J. Knight, and J. Davidson. Software
tamper resistance: Obstructing static analysis of programs.
Technical Report CS-2000-12, Dept. of Computer Science,
University of Virginia, 12 2000.

